Neuron-Specific Fluorescence Reporter-Based Live Cell Tracing for Transdifferentiation of Mesenchymal Stem Cells into Neurons by Chemical Compound
نویسندگان
چکیده
Although transdifferentiation of mesenchymal stem cells (MSCs) into neurons increases the possibility of therapeutic use of MSCs for neurodevelopmental disorders, the use of MSCs has the limitation on differentiation efficiency to neuronal lineage and lack of an easy method to monitor the transdifferentiation. In this study, using time-lapse live cell imaging, we assessed the neuronal differentiation of MSCs induced by a small molecule "NHPDQC (N-hydroxy-2-oxo-3-(3-phenylprophyl)-1,2-dihydroquinoxaline-6-carboxamide, C18H17N3O3)." Plasmid vector containing red fluorescence reporter genes under the control of the tubulin α1 (Tα1) promoter (pTα1-DsRed2) traced the neuronal differentiation of MSCs. Two days after NHPDQC treatment, MSCs showed neuron-like phenotype with neurite outgrowth and high expression of neuron-specific markers in more than 95% cells. The fluorescence signals increased in the cytoplasm of pTα1-DsRed2-transfected MSCs after NHPDQC treatment. In vitro monitoring of MSCs along the time courses showed progressive increase of fluorescence till 30 h after treatment, corresponding with the increase in neurite length. We examined an efficient neuronal differentiation of MSCs by NHPDQC alone and monitored the temporal changes of neuronal differentiation by neuron-specific fluorescence reporter along time. This method would help further our understanding of the differentiation of MSCs to produce neurons by simple treatment of small molecule.
منابع مشابه
Harvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملTransdifferentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Dopaminergic Neurons in a Three-Dimensional Culture
Introduction: The induction of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) toward dopaminergic neurons is a major challenge in tissue engineering and experimental and clinical treatments of various neurodegenerative diseases, including Parkinson disease. This study aims to differentiate HUC-MSCs into dopaminergic neuron-like cells. Methods: Following the isolation and charac...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملDifferentiation of human embryonic stem cells into neurons
Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...
متن کاملA New Multistep Induction Protocol for the Transdifferentiation of Bone marrow Stromal Stem Cells into GABAergic Neuron-Like Cells
Background: Bone marrow stromal stem cells (BMSC) are appropriate source of multipotent stem cells that are ideally suited for use in various cell-based therapies. It can be differentiated into neuronal-like cells under appropriate conditions. This study examined the effectiveness of co-stimulation of creatine and retinoic acid in increasing the differentiation of BMSC into GABAergic neuron-lik...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017